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Imido derivatives of VOCl3 were also found to be useful for 
oxidative decarboxylation. A series of such complexes, C l 3 V = 
N C 6 H 4 X (X = CH 3 , 8 NO 2 , 9 or OCH 3

8 ) , was prepared. Quali­
tatively, rates for olefin formation from model hydroxy acid 3 were 
found to increase in the order X = O C H 3 < C H 3 < NO 2 . In­
terestingly, the stereospecificity of olefination varied with the 
opposite trend. Thus for the threo diastereomer 3b, the complex 
with X = O C H 3 gave an olefin ratio E/Z = 7 : 1 at short reaction 
times, but essentially no selectivity was observed for X = C H 3 

or NO 2 . The tolyl complex is particularly effective for preparing 
highly substituted olefins10 (see Table I). 

A mechanistic proposal which accounts for observed products 
and selectivities is shown in Scheme I. This involves formation 
of a carbon-centered radical via one-electron reduction of V(V) 
to V(IV) and subsequent decarboxylation.11 Collapse of this 
radical would yield the olefin and generate a new V(V) oxo 
compound. Significantly, 3-hydroxy-3-methyl-2-phenylbutanoic 
acid (18)12 gave both olefin 2 and benzaldehyde when treated with 
VOCl3 in refluxing chlorobenzene. For benzaldehyde to be 
produced in this latter case not only must decarboxylation occur 
but also a new C - O bond must be formed. In support of a 
glycolate intermediate it was noted that benzaldehyde and 2-
butanone were obtained from 2-ethyl-3-hydroxy-2-methyl-3-
phenylpropanoic acid (3).6 When imido complexes were used in 
place of VOCl3 , no cleavage occurred, and only olefins were 
formed.13 If initial V-OC(O) homolysis were rate-determining, 
then an electron-withdrawing group on the aryl imido ligand (for 
example, NO 2 ) should accelerate the overall reaction relative to 
a donor (X = OCH 3 ) . 1 4 The stereospecificity of the overall 
process would vary in the opposite direction: substituent groups 
which destabilize low-valent versus high-valent vanadyl should 
accelerate diradical collapse relative to stereochemical reorgan­
ization of the intermediate.15 Cyclization of the 1,4-metallo-
diradical intermediate to vanadyl oxygen would give a glycolate 
which could cleave to give the carbonyl products observed.16 We 

(6) 2-Ethyl-3-hydroxy-2-methyl-3-phenylpropanoic acid (3) was prepared 
(43%) from 2-methylbutanoic acid and benzaldehyde. The diastereomers were 
separated by column chromatography (50:50:1 hexane/ether/acetic acid). 
The erythro diastereomer (3a)7 was eluted first (mp 128.0-129.5 0C); the 
threo diastereomer (3b) was eluted next (mp 129.0-131.0 0C). 

(7) The erythro diastereomer (3a) was identified by its conversion to 
(£)-2-methyl-l-phenyl-l-butene (4E) via anti elimination (Mulzer, J.; 
Pointner, A.; Chucholowski, A.; Bruntrup, G. /. Chem. Soc, Chem. Commun. 
1979, 52-4). 

(8) Devore, D. D.; Lichtenhan, J. D.; Takusagawa, F.; Maatta, E. A. J. 
Am. Chem. Soc. 1987, 109, 7408-16. 

(9) Cl3V=NC6H4NO2 was prepared8 from VOCl3 and 4-nitrophenyliso-
cyanate. 

(10) Yields for tetrasubstituted olefins are at least comparable to those 
obtained using any of the three standard methods for making positionally 
defined olefins from 3-hydroxycarboxylic acids: For routes via ^-lactones,4 

see also: (a) Noyce, D. S.; Banitt, E. H. J. Org. Chem. 1966, 31, 4043-7. (b) 
Krapcho, A. P.; Jahngen, E. G. E., Jr. J. Org. Chem. 1974, 39, 1650-3. (c) 
Schollkopf, U.; Hoppe, I. Angew. Chem., Int. Ed. Engl. 1975, 14, 765. (d) 
Mageswaran, S.; Sultanbawa, M. U. S. J. Chem. Soc, Perkin Trans. 11976, 
884-90. (e) Imai, T.; Nishida, S. J. Org. Chem. 1980, 45, 2354-9. For 
procedures via triphenylphosphine-diethylazodicarboxylate adducts' see, also: 
(O Mulzer, J.; Lammer, O. Angew. Chem., Int. Ed. Engl. 1983, 22, 628-9. 
For a procedure via DMF-acetal, see: (g) Hara, S.; Taguchi, H.; Yamamoto, 
H.; Nozaki, H. Tetrahedron Lett. 1975, 1545-8. For ethylpropylidene-
cyclobutane (16), for example, the /3-lactone route gave only ~20% (by 1H 
NMR) as a component of a complex mixture of products. 

(11) Reduction of vanadium(V) to vanadium(IV) followed by rapid C-C 
bond fission to give the carbon-centered radical, R2C(OH), is proposed as the 
rate-determining step in the oxidative decarboxylation of lactic, malic, and 
mandelic acids.Ia 

(12) Petrova, L. A.; Bel'tsova, N. N.; Remizov, A. L.; Vasil'eva, L. M. J. 
General Chem. USSR 1968, 38, 1654-7. 

(13) Consistent with the notion that decarboxylation is a redox process, 
olefin synthesis from the imido complex adduct is slower than that from its 
vanadyl analogue. 

(14) The arylimido group is likely a better electron donor than the oxo 
ligand. For a series of W analogues, see: Su, F.-M.; Cooper, C; Geib, S. J.; 
Rheingold, A. L.; Mayer, J. M. J. Am. Chem. Soc. 1986, 108, 3545-3547. 
Bryan, J. C; Geib, S. J.; Rheingold, A. L.; Mayer, J. M. J. Am. Chem. Soc. 
1987, 109, 2826-2828. 

(15) Similar diradicals have been proposed as intermediates in epoxide 
deoxygenation in which the stereospecificity of the process is believed to be 
related to oxidation of the metal in a 1,4-metallodiradical intermediate 
(Hayashi, Y.; Schwartz, J. Inorg. Chem. 1981, 20, 3473-6). 

continue to investigate the mechanism and synthetic possibilities 
of this novel decarboxylation procedure. 
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(16) Apparently only high-valent vanadium glycolates cleave. 2-Methyl-
l-phenylpropane-l,2-diol (17)17 reacted with VOCl3, VOCl2, and VCl3, but 
benzaldehyde was formed in high yield (47%) only when VOCl3 was used. 
Reaction with VOCl2 gave rise to a lesser amount of benzaldehyde (3%), and 
VCl3 gave no aldehyde; when 0.2 equiv of VOCl3 was added to the VCl3/diol 
solution, benzaldehyde was formed (90%) on reflux. 

(17) Huffman, J. W.; Browder, L. E. J. Org. Chem. 1962, 27, 3208-3211. 
(18) Cornforth, D. A.; Opara, A. E.; Read, G. J. Chem. Soc. C 1969, 

2799-2805. 
(19) 2,2-Dimethyl-3-ethyl-3-hydroxypentanoic acid (7) was prepared from 

2-methylpropanoic acid and 2-pentanone (mp 44.0-45.0 0C). 
(20) The relatively low yield of this olefin may be related to conformational 

problems in the chelate intermediate. We thank a referee for bringing this 
to our attention. 

(21) 2-(l-Hydroxycyclobutyl)-2-ethylbutanoic acid (15) was prepared 
from 2-ethylbutanoic acid and cyclobutanone (mp 68-9 0C). 
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It is well-known that oxidation of Cp2V or CpV(CO) 4 (Cp = 
T)-C5H5) with a large excess of dioxygen, followed by treatment 
with a source of chloride, gives high yields of CpVCl2(O).1 '2 The 
nature of the product of the initial oxidation is unknown. Recently 
similar reactions have been used to obtain Cp*VCl 2 (0 ) from 
Cp2*V or Cp*V(CO)4 (Cp* = Jj-C5Me5).3"5 We have shown that 
controlled oxidation of Cp2V with a deficiency of a reagent 
containing oxygen gives [CpV]m(^3-0)„ clusters and derivatives 
of these such as Cp14V16O24.6"8 We report here the remarkable 
controlled oxidation of Cp2*V with O2 , giving [/n-ri3-C5Me503)-
V(O)J2. Three oxygen atoms are inserted into adjacent V-C bonds 
in an all-cis configuration. 

When Cp2*V was incubated with O2 (1:2 mol ratio) at -78 0 C 
in hexane, the red solution initially became green, changing very 
rapidly to red-brown. After 1 h all the O2 had been consumed. 
The red-brown solution was poured onto a column (1 X 40 cm 
glass beads, 120-200 mesh) and eluted with hexane. The first 
eluate was pale yellow; removal of the hexane under vacuum gave 
colorless platelets of (C 5Me 5 ) 2 ( I ) . 9 A second eluate was ruby 

(1) Fischer, E. O.; Vigoureux, S. Chem. Ber. 1958, 91, 1342. 
(2) De Liefde Meijer, H. J.; Van Der Kerk, G. J. M. Reel. Trav. Chim. 

Pays-Bas 1965, 84, 1418. 
(3) Bottomley, F.; Sutin, L. J. Chem. Soc, Chem. Commun. 1987, 1112. 
(4) Herberhold, M.; Kremnitz, W.; Kuhnlein, M.; Ziegler, M. L.; Brunn, 

K. Z. Naturforsch. 1987, 42B, 1520. 
(5) Herrmann, W. A.; Weichselbaumer, G.; Kneuper, H.-J. J. Organomet. 

Chem. 1987, 319, C21. 
(6) Bottomley, F.; Paez, D. E.; White, P. S. /. Am. Chem. Soc. 1985,107, 

7226. 
(7) Bottomley, F.; Paez, D. E.; White, P. S. J. Am. Chem. Soc. 1982, 104, 

5651. 
(8) Bottomley, F.; Drummond, D. F.; Paez, D. E.; White, P. S. J. Chem. 

Soc, Chem. Commun. 1986, 1752. 
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Figure 1. The molecular structure of [(M-Ji3-C5Me503)V(0)]2 (2) as 
determined by X-ray diffraction. 

red. Crystalline [(/LtV-C5Me5O3)V(O)J2 (2) was obtained from 
this second eluate by slow removal of hexane in vacuum. The 
nature of 2 was proven by spectroscopy12 and X-ray diffraction 
(Figure I).13 

(9) Characterization of (C5Me5)2 (1): mp 53-58 0C dec; 1H NMR 200 
MHz (C6D5CD3 solution) 1.10 (s, 6 H), 1.65 (s, 12 H), 1.72 (s, 12 H); 13C 
NMR 50 MHz (C6H14 solution) 10.5, 12.3, 19.4 (C5(CH3);), 60.1, 133.4, 
141.8 (C5(CH3J5); mass spectrum m/e = 270.2336 (4), calcd for C20H30

+, 
270.2347; other major fragments were 180 (C13H24

+), 168 (C12H24
+), 151 

(CnH19
+), 135 (C10H15

+). The results are in reasonable agreement with those 
in the literature.11''11 

(10) Jutzi, P.; Kohl, F. J. Organomet. Chem. 1979, 164, 141. 
(11) Davies, A. G.; Lusztyk, J. J. Chem. Soc. Perkin Trans II1981, 692. 
(12) Spectroscopic data for 2: IR i>(V=0) 935 (m), 957 (sh) cm'1; 1H 

NMR 200 MHz (C6D5CD3 solution) 2.12 (s, 12 H), 2.05 (s, 18 H); 13C NMR 
50 MHz (C6H14 solution) 10.5 (CH3C=), 27.2, 29.8 (CH3C-O); 125.3 
(C=Q, 128.1 (C-O), 128.9 (C-O); 51V NMR 52.5 MHz (C6H14 solution) 
-672.5; mass spectrum m/e 500 (2+), 482 (C20H28O7V2

+), 350 
(C10H16O7V2

+), 264 (C10H13O5V
+), 249 (C10H14O4V

+), 219 (C10H16O2V
+), 

167 (Ci0Hi5O2
+), 151 (Ci0H15O

+); structural assignments for the fragments 
are given in the Supplementary Material. 
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2 is a Vv derivative of the triol 3 and is produced by formal 
insertion of three oxygen atoms into adjacent V-C bonds of (-n-
C5Me5)2V. It is very soluble in hexane and other nonpolar solvents 
and is stable to O2. However, it is readily hydrolyzed, particularly 
in alkaline solution. 

Almost as remarkable as 2 itself is that the reaction which 
produces it is quantitative according to eq 1. Since loss of C5Me5 

2Cp2*V + 4O2 -* 2 + (C5Me5)2 (1) 

is not a feature of the chemistry of Cp2*V, an intermediate 
containing one intact Cp* ligand for each vanadium must be 
formed on oxidation. Preliminary work indicates that this in­
termediate is [Cp*V(0)(OC5Me5)]2, a vanadium(IV) derivative 
related to Cp*W(6)2(OC5Me5) obtained on oxidation of 
Cp2*W(0) with O2.

14 We are presently attempting to confirm 
the intermediate and to extend the reaction, which has synthetic 
potential in carbohydrate chemistry, to other cyclopentadienyl 
derivatives. 
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(13) Crystal data for 2 (C20H30O8V2): monoclinic, P2Jn; a = 11.309 (1) 
A, A= 14.163(1) A, c= 14.212 (I)A,/3 = 95.601 (9)°; Z = 4. Diffraction 
data: 2931 unique reflections with 26 < 45° (Mo Ka radiation), 1612 ob­
served (/ > 2.5<r(/)); no absorption correction (M = 12-2 cm"'). Refinement 
data: 272 parameters (all non-hydrogen atoms anisotropic, H riding on C with 
fixed B1 ); R = 0.066, R„ = 0.074, goodness of fit 1.553; highest final peak 
0.75 e A"3, deepest hole -0.42 e A"3. Important molecular parameters 
(averaged over the two crystallographically inequivalent halves of 2): V-O 
1.581 (7), V-O(A) 1.770 (7), V-O(B) 1.957 (6), C-O 1.45 (1), C-C(ring) 
1.52 (1), C-C 1.33 (1), C-CH3 1.51 (1) A (0(A) are bonded to a single V, 
O(B) to both V). Full details have been deposited. 

(14) Bercaw, J. E.; Parkin, G. Polyhedron 1988, 7, 2053. Parkin, G.; 
Marsh, R. E.; Schaefer, W. P.; Bercaw, J. E. Inorg. Chem. 1988, 27, 3262. 
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While both chemical intuition and ab initio calculations within 
the Hartree-Fock (HF) level of theory1 predict that propadienone 
( H 2 C = C = C = O ) 2 should maintain a symmetric structure, both 
experiment3 and ab initio calculations employing electron cor­
relation4 reveal that the actual structure is badly bent. A mi­
crowave spectrum5 and matrix-isolated infrared spectrum6 for 

(1) (a) Radom, L. Aust. J. Chem. 1978, 31, 1-9. (b) Komornicki, A.; 
Dykstra, C. E.; Vincent, M. A.; Radom, L. J. Am. Chem. Soc. 1981, 103, 
1652-1656. 

(2) (a) Brown, R. F. C; Eastwood, F. W.; McMullen, G. L. J. Am. Chem. 
Soc. 1976, 98, 7421-7422. (b) Brown, R. F. C; Eastwood, F. W.; McMullen, 
G. L. Aust. J. Chem. 1977, 30, 179-193. 

(3) Brown, R. D.; Champion, R.; Elmes, P. S.; Godfrey, P. D. J. Am. 
Chem. Soc. 1985, 107, 4109-4112. 

(4) (a) Farnell, L.; Radom, L. Chem. Phys. Lett. 1982, 91, 373-377. (b) 
Taylor, P. R. J. Comput. Chem. 1984, J, 589-597. (c) Brown, R. D.; Dittman, 
R. G. Chem. Phys. 1984, 83, 77-82. 

(5) (a) Brown, R. D.; Godfrey, P. D.; Champion, R.; McNaughton, D. J. 
Am. Chem. Soc. 1981, 103, 5711-5715. (b) Brown, R. D.; Champion, R.; 
Elmes, P. S.; Godfrey, P. D. J. Am. Chem.Soc. 1985, 107, 4109-4112. 

(6) Chapman, O. L.; Miller, M. D.; Pitzenberger, S. M. /. Am. Chem. Soc. 
1987, 109, 6867-6868. 
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